
A Self-Configuring Communication Virtual Machine1

S. Masoud Sadjadi2, Selim Kalayci3, and Yi Deng4, Member, IEEE
School of Computing and Information Sciences

Florida International University, Miami, FL, U.S.A
{ sadjadi,skalaOOl,deng} @cs.fiu.edu

Abstract- Today's communication-based applications are
mostly crafted in a stovepipe development paradigm, which is
inflexible to be used by various domain-specific applications
and costly in the development phase. In a previous paper [1], we
proposed a new design called CVM (Communication Virtual
Machine) to overcome these problems by having a high-level
API which can be reused and extended easily for user-centric
applications in any domain. Within CVM framework, we came
across a practical issue, which is actually the case for any end-
to-end multimedia communication, namely the NAT-traversal
(network address translation) problem that limits the reliability
and availability of CVM and variants of CVM. In this paper,
we explain about the necessity of self-configuration for the
NAT-traversal problem in end-to-end communications, and
propose a solution within the core CVM framework.
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I. INTRODUCTION

Communication-based software which mainly provides
end-to-end transfer of data, such as audio, video, etc.
developed and used today, are mostly being developed in a
stovepipe style and gives a general-purpose solution for
whatever type of domain (purpose) it is going to be used.
But, what really needed is to have a user-centric application
which can be tailored easily from a generic framework by a
domain expert, without needing any software development
phase. This led us to a prior and ongoing work [1], in which,
this generic-framework is called CVM (Communication
Virtual Machine).

However, this generic framework needs to have a solution
for a very common practical problem, namely the NAT-
traversal problem, in its core, so that any variants of CVM
would be ready for use without requiring any additional
effort. We propose a self-configuring solution within our
CVM framework, which is able to adapt itself to different
NAT configurations, so that the establishment of a
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communication session and media transfer within the session
can proceed without requiring any user-intervention.

There are four basic types of NAT devices which act
differently when dealing with network traffic coming-
in/going-out the private network they are responsible for. We
need two phases to overcome the NAT problem. First, each
participant of the communication session needs to detect the
NAT type and the public address information, it is using
while communicating with outside world. Second, we need a
mechanism to traverse the NAT devices in one or two ends
of the communication and reach to the intended user. For the
first phase, STUN (Simple Traversal of UDP Datagrams
through NATs) [2] protocol is a very common and effective
method used today. For the second phase, either a well-
known relay node can be used to forward the packets both
ways, or UDP hole punching technique [3] can be used for a
direct end-to-end communication. Most of the
communication applications today need to go through the
same phases in development to incorporate some variation of
the above techniques in their applications to handle the NAT
traversal problem. Our self-configuring CVM framework
eases the task of application developers, by providing tools
that can be used to generate a domain-specific
communication application, and resolving the NAT-traversal
issue transparently.
By embedding a self-configuring NAT-traversal solution

within our layered CVM architecture, we are offering a
generic framework for communications-related applications
in which the NAT-traversal is accomplished transparently as
one core functionality provided within CVM.
To validate our results, we conducted several

demonstrations with our CVM prototype for almost all kind
of communication tasks that people use today, such as,
instant messaging, audio/video transfer, file transfer, etc. We
run our prototype on different machines and simulated all
different combinations of NAT configurations (except
symmetric NAT) between users. We will talk more about
details of our testbed in Section 4.

The results we got from these simulations validated our
design, and CVM prototype was able to self-configure itself
to the NAT configuration it is bound, which results in
successful communication sessions between participants.
This makes our CVM framework more reliable and robust to
move it towards the idea behind our CVM approach,
providing a generic framework that can be re-used easily for
domain-specific communication applications.
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II. BACKGROUND

Convergence of data, voice and multimedia
communication over IP networks has enabled a wide-range
of communication-based applications. But, the stovepipe
approach followed to develop these applications does not
clearly separate the concerns of application logic from
network-level communication logic and media delivery. This
causes the end-product to have fixed set of functionalities
and it is difficult to adapt it to various user needs. Also, most
of these applications are not able to interoperate without
extra work. Moreover, domain-specific applications like
telemedicine and disaster management, needs to go through
the whole application development cycle which is costly,
lengthy and error-prone. This kind of problems led us to our
prior work [1], in which we proposed a user-centric, model-
driven approach for designing and developing such
communication-based solutions across application domains.
We called this framework CVM (Communication Virtual
Machine).

First of all, in CVM framework, general purpose or
domain specific communication needs are specified in a so-
called communication schema, which is independent from
network-level issues and actual media communication. This
communication schema, which can be formed by the user
intuitively or can be provided as certain templates,
constitutes the base of communication instance logic. This
schema is then instantiated, negotiated, synthesized and
executed, in order, to meet the needs of the user.

This model-driven communication is supported in CVM
by four-layer architecture as shown in Figure 1. This
architecture lets us to separate and encapsulate major
concerns of communication modeling, synthesis,
coordination, and the actual delivery of communication
elements. Next, we will briefly talk about each layer and
their responsibilities.

User/ Application (Initiator) User/ Application (Initiator)

Schema Instance
----Ncg6hfi-t7lUi --

Communication Logic

Communication Data

Communication Network Communication Network

Fig. 1. CVM Architecture

UCI (User Communication Interface) layer is
responsible for providing means to define and manage
communication schema. For this purpose, we defined both
an XML-based and a graphical communication modeling
language, for more details you can refer to [1, 4]. SE
(Synthesis Engine) layer first manages the negotiation of
communication schema between participants, and then
transforms this schema to an executable communication
control script. This script represents the network-

independent control logic for the communication session
specified in the communication schema. UCM (User-centric
Communication Middleware) layer is the execution engine
for communication control scripts. It manages this task by
invoking the proper services provided by the NCB layer.
NCB (Network Communication Broker) layer provides a
uniform API of high-level and network-independent services
to UCM layer to manage the actual communication tasks
needed by the application. We will talk more about this layer
in Section 3.
NAT (Network Address Translation)[5] method is used to

map an end-node's internal network address to a globally
accessible network address, when that end-node wants to
communicate with another end-node that doesn't belong to
the same private network. This is done basically for two
reasons, to hide the internal address within a private network
from outside world, or to be able to accommodate more end-
hosts than the number of public addresses available within a
private network. NAT devices placed at the edge of a private
network does the mapping of an internal address to a public
address, and also keeps the state information so that the
packets belonging to the same session can reach to the
correct internal node.

While enabling the communication between internal and
external nodes transparently, NAT has several drawbacks for
end-to-end communications. In direct end-to-end
communications, the peers need end-point address of the
peer they want to communicate. For this reason, applications
at each peer forward the address information they can be
reached, to the other peers. However, if a peer is behind a
NAT device, the information it forwarded to other peers is
its private address information and doesn't match with the
mapping at the NAT device it is behind. So, the receiving
peers will not be able to reach to the correct peer, because
the address information they got is either invalid or points to
a wrong end-point.

Besides the negative effect caused by NAT devices by
altering end-point address information, NAT devices treat
communication through them in four different ways. In
literature NAT devices are categorized into four categories
according to their treatment for the communication going
through it. First one is called Full Cone NAT, which maps
the requests coming from the same internal IP address and
port to the same global IP address and port. Second one,
Restricted Cone NAT, does the mapping like Full Cone
NAT, but an external node can send a packet to an inside
node only if the inside node had sent a packet to that external
node before. Third, Port Restricted Cone NAT is the stricter
version of Restricted Cone NAT, where a request from an
external IP address and port can reach to an internal IP
address and port only if the internal node had sent a packet
to that external IP address and port before. Fourth,
Symmetric NAT maps the same internal IP address and port
to some global IP address and port for reaching a specific
destination IP address and port. But, if the same internal IP
address and port wants to reach to a different destination IP
address and port, another mapping is used. Also, an external
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node can send a packet, if the internal node had previously
sent a packet to it.
To be able to provide direct end-to-end communication

between peers, first, we need to detect the NAT type and the
mapped address information at each peer. Then, we need to
incorporate this information within a mechanism to be run by
peers collaboratively. We incorporate a widely used method
for the first phase in our framework, which is called STUN
(Simple Traversal of User Datagram Protocol (UDP)
Through NATs) [2]. In this simple client-server protocol, the
end-host as a client interacts with two separate STUN servers
in a certain manner, which ends up revealing the
aforementioned information about the end-host and the NAT
device it is behind. We need to note one important fact here,
that, this protocol does not help for retrieving address
information where there is a symmetric NAT. The reason for
that comes from the nature of symmetric NAT, which maps
the internal IP address and port onto a different external IP
address and port when contacting with different destination
peers.

Before the direct connection is established between peers,
end-point address information is exchanged between peers
through some centralized server or a relay node. But, this is
not enough for peers to deliver direct messages with each
other. Because, Restricted cone and Port Restricted cone
NAT requires, an application at an internal node to send a
packet to an application at an external node to allow the
packets pass through in the reverse direction. Coming over
this problem needs both peers to work collaboratively which
is formalized in a method called UDP hole punching [3]. In
UDP hole punching, basically, both peers send a dummy
packet to the address they received from the other side,
making their NAT devices to allow for further incoming
packets to be received from the other side. After this step, it
is expected to have a direct end-to-end communication
between two peers behind any NAT devices, except for
symmetrical NAT.

III. SELF-CONFIGURATION IN CVM

Our CVM framework makes use of self-configuration
approach to overcome NAT-traversal problem. Since NAT-
traversal problem is related with network address
management and delivery of actual data, it is handled by the
NCB layer of CVM. So, first we will explain some details
about NCB abstraction and design and then we will describe
how self-configuration is handled by NCB.

A. Network Communication Broker (NCB)
NCB serves as a unified abstraction within CVM

framework, to provide basic user-centric communication
services reusable by different domain-specific
communication applications. Applications built on NCB are
transparent to the details of underlying network protocols
and infrastructure.
We identified the core abstractions to satisfy the needs of

user-centric multimedia communication applications. First,
NCB abstraction provides registration and presence
mechanism, to allow users to be involved in a

communication environment and a way for the users to
identify the presence of other users in the system. Second,
NCB abstraction provides a user session, which defines a
certain communication session involving two or more
participants exchanging different kinds of media with each
other. Third, it encapsulates the details of end-host
networking infrastructure which makes it portable over
heterogeneous networking infrastructures. Fourth, its
interface is able to notify or queried about the underlying
network and system events. Finally, it allows self-
management policies to be defined and applied to control
how media is exchanged and delivered.

Based on these abstractions, NCB architecture is shown in
Figure 2. NCB manager handles the initialization and basic
configurations of NCB. Also, it creates a new session
manager for each session and oversees all of the active user
sessions. Session manager deals with an individual session,
specifically, the participants involved in a session, call
processing and negotiating and preparing the groundwork for
media delivery before delegating the control to Media
Processing&Transmission module to actually deliver the
media. Signaling module handles basic signaling operations
at the network level, such as registration, inviting a user,
media negotiation, etc. QoS and Self-management module
assists the Media Delivery module by automatically adapting
media transmission parameters based on the policies defined
and the status of the current network environment. We will
talk about NetworkAddressManager in the next section.

For the implementation of NCB, we chose the SIP
(Session Initiation Protocol) [6] as the signaling protocol,
since SIP is accepted as a standard protocol for today's
multimedia communication applications and is interoperable
with most communication infrastructures through various
kinds of gateways. Media negotiation is done through SDP
(Session Description Protocol) [7] message exchanges,
which is sent along with SIP messages. Real-time multimedia
transmission is achieved using RTP (Real-time Transport
Protocol) [8]. More specific details about implementation
can be found in [9].

B. Self-Configuration in NCB

Self-configuration in NCB, to allow end-hosts behind
different types of NAT, and communicate directly with each
other is managed by the help of NetworkAddressManager
module. As seen in Figure 2, NetworkAddressManager
intercepts all the calls going for the Signaling module.
Signaling module handles basic signaling operations such as
registration, user invite, media parameters negotiation. This
module inserts and forwards address information to presence
server, which in turn may forward it to other end-hosts.
Hence, the address information used in the packets going out
of Signaling module must include correct information for a
successful communication.
Before going forward to how this self-configuration is done

by NetworkAddressManager, we need to mention about two
variables our solution keeps track of, within
NetworkAddressManager module. First variable is,
localAddress, which includes the local IP address of the end-
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host, and checked periodically to decide whether a NAT
detection procedure is needed or not. Second variable,
globalAddress, includes the external IP address acquired as
the result of the NAT detection procedure through STUN

Fig. 2. Architecture of NCB

protocol. These variables are initialized at the startup of the
application, and if the end-host is not behind any NAT
device, they will include the same information.
Now, let's explain the interception labeled as RI in Figure

2. One of the tasks of Presence module is to register the end-
host with the presence server periodically. Presence server
keeps track of location of each end-host registered with it.
The interception made at this point makes the end-host to
verify/update its localAddress and globalAddress
information periodically. This saves us some time during the
media session negotiation (MI, M2). If there was a change in
these variables before a media session negotiation, it can be
detected in one of the previous periodic registration
procedures. In this case, media session negotiation can
proceed without needing any NAT detection procedure,
because it had already been performed.
Verify/Update process for the localAddress and

globalAddress mentioned above is as simple as this: If the
localAddress information did not change during the last
registration interval, no action is necessary; we just verify
localAddress and globalAddress. But, if the localAddress is
different from the previous value, it means that the network
configuration and address information has changed since,
and we need to update localAddress information, and also
globalAddress information through running the NAT
detection procedure.
Actually, network configuration change does not happen

very frequently, unless end-host handovers between different
wireless networks. Hence, interception done periodically
through Registration module will just verify the current
address information most of the time. Even though we
intercept each registration message, this is not crucial for a

successful direct connection between end-hosts. Because
even though we do periodic verify/update operation through
registration messages, we also intercept the messages sent for
media session negotiation (MI). This is done to make sure,
correct information is put into SDP messages, especially if
the time interval between each registration period is long.
During the negotiation phase of the Media Delivery process,
labeled as Mland M2, end-hosts forward their address
information within SDP messages to each other via the SIP
server. Each end-host processes the received SDP message
to retrieve the address information and other negotiation
related information before establishing a direct
communication link between them. For this reason, just
before exchanging SDP messages, end-hosts verify/update
their address information. Each end-host sets the connection
parameter within their SDP message as the globalAddress.
This phase accomplishes the task of exchanging the correct
address information, so that end-hosts can use this
information to directly connect to each other.

After the negotiation is complete, end-hosts
theoretically can start communicating directly with each
other, because they have the address information needed to
reach each other. But, if there is a restricted cone or port
restricted cone NAT intercepting the packets destined to an
end-host, end-host behind this type of NAT can not receive
any packet from an external node, unless it first sends a
packet destined to that external end-host. Thus, we need to
use UDP hole punching in such a case, to traverse this type
of NAT and reach to the end-host behind it. In our system,
after the successful media session negotiation phase, we use
UDP hole punching mechanism at all times, to start a media
communication between end-hosts. The reason for using
UDP hole punching all the time is its simplicity and cost-
effectiveness. Because even though in some cases it may be
unnecessary to use UDP hole punching, it requires only one
random packet to be sent towards the remote end-point,
which doesn't cause any overhead in implementation and
doesn't consume time or other resources. If we didn't choose
to use UDP hole punching all the time, we would need to
have some extra steps. First, we would need to pass the type
of NAT to the remote side along with address information.
Then we would need to process NAT type information and
decide whether to use UDP hole punching or not. As a result,
using UDP hole punching at all NAT type cases serves out
our needs with almost no overhead.

Self-configuration mechanism we described above fulfills
the task of transparent NAT traversal, to achieve direct end-
to-end communication between end-hosts behind any type of
NAT except the symmetric NAT. The end-hosts involved in
a communication session can exchange different types of
media with each other directly, even when some of the end-
hosts are behind a NAT device. But, if the global network
address for one of the end-hosts changes during the media
transmission, that end-host becomes unreachable from other
end-hosts involved in the communication session. This
problem may be addressed through re-establishing the
session between the users through passing the updated
address information. But, this naive method needs to be
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refined to minimally effect the ongoing communication
session; especially when multiple parties are involved and
multiple media sessions are established. Coming up with a
low overhead solution to this problem remains as a future
study, which would provide self-healing property to our
system.

IV. EXPERIMENTAL RESULTS

We have implemented a CVM prototype including self-
configurable NCB, using Java technologies. We
incorporated the open source JAIN SIP [10] implementation
by NIST and also open source STUN implementation from
Sip-communicator [11] project. More details of our
prototype implementation can be found in [1, 9].
We are using an in-home server as the registration server

and SIP server. All SIP messages between peers are
forwarded through this server, while media transmission is
done directly between peers. We deployed CVM prototype
implementation on several different machines to demonstrate
its self-configuration capability. These machines were either
on Open internet, or behind Full cone, restricted or port
restricted cone NAT. We tried to have a direct media
communication session, and transmit live audio-video
streams between all possible combinations of these
machines. Results approved the self-configurability of our
system without adding too much extra overhead to the end-
hosts. We were able to establish a direct media session and
transmit audio-video messages successfully in all
demonstrations. We also tested the self-configuration after
the application has been started up and logged in to the
system, by switching between different wireless networks
with different NAT types. This demonstration also went
through without any problem.

V. RELATED WORK

Multimedia communication applications widely used
today, such as MSN Messenger, Yahoo Messenger and
Google Talk provides generic platforms which can not be
extended to satisfy the needs of specific user requirements.
Also, these applications do not interoperate with each other,
requiring users to switch between these tools.

Communication middleware has been worked on quite
extensively. One of these works is presented by Schmidt [12]
talks about the usage of patterns and frameworks to reduce
the complexity associated with the large and growing number
of multimedia data types, traffic patterns and end-to-end QoS
requirements. He also pointed out the difficulties of
developing communication applications caused by the
limitations of low-level native APIs and the limitations of
higher-level middleware.

Stiller et al. [13] also described the design and
implementation of a communication middleware called Da
CaPo++, which is adaptable to different application needs.
Authors claimed that Da CaPo++ automatically configuring
suitable communication protocols, and offering an easy to
use object-oriented API.

Java Telephony API [14] is a high-level API specific to
the traditional telephony applications, so it does not support
multimedia communication applications. Parlay API [15]
enables the rapid creation of telecommunication services.
These frameworks mostly address the concerns for server-
side architectures, whereas NCB layer in our framework
addresses the concerns of the client-side middleware.

Commercial software, such as Skype [16], MSN
Messenger [17] resolves the NAT problem, but their solution
is proprietary or uses intermediaries or customized entities to
forward the media traffic. Open source SIP Communicator
[11] implements NAT detection techniques but doesn't
provide a reliable NAT traversal solution. Another open
source implementation YATE [18] provides a partial
solution to the NAT problem via the usage of YATE servers
to forward the RTP streams to the correct address.

VI. CONCLUSION

CVM provides a flexible and easy-to-use framework for
developing domain-specific applications. CVM is composed
of a layered architecture, separating the concerns of
application logic and network-level communication and
media delivery issues. In this paper, we have presented our
self-configuration solution for the NAT-traversal problem
within the CVM architecture. This is done by intercepting
the outgoing media negotiation messages with our
NetworkAddressManager module in NCB layer. This
module, using several mechanisms like STUN and UDP hole
punching in a well-defined systematic way, enables end-
hosts to communicate with each other directly. Transparent
NAT-traversal solution provided by NCB layer follows our
separation of concerns methodology, and makes NCB easy
to deploy in other systems.

Experiments we have conducted with three different types
of NAT configurations gave us successful results. NAT-
traversal for another type of NAT, namely the symmetric
NAT has not been addressed in this paper. But, it is also the
fact that the communication between end-hosts with at least
one of them behind a symmetric NAT always can be realized
by using some relay hosts in between.
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